Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 11(1): 17878, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1402125

ABSTRACT

As the COVID-19 infection continues to ravage the world, the advent of an efficient as well as the economization of the existing RT-PCR based detection assay essentially can become a blessing in these testing times and significantly help in the management of the pandemic. This study demonstrated an innovative and rapid corroboration of COVID-19 test based on innovative multiplex PCR. An assessment of optimal PCR conditions to simultaneously amplify the SARS-CoV-2 genes E, S and RdRp has been made by fast-conventional and HRM coupled multiplex real-time PCR using the same sets of primers. All variables of practical value were studied by amplifying known target-sequences from ten-fold dilutions of archived positive samples of COVID-19 disease. The multiplexing with newly designed E, S and RdRp primers have shown an efficient amplification of the target region of SARS-CoV-2. A distinct amplification was observed in 37 min using thermal cycler while it took 96 min in HRM coupled real time detection using SYBR green over a wide range of template concentrations. Our findings revealed decent concordance with other commercially available detection kits. This fast HRM coupled multiplex real-time PCR with SYBR green approach offers rapid and sensitive detection of SARS-CoV-2 in a cost-effective manner apart from the added advantage of primer compatibility for use in conventional multiplex PCR. The highly reproducible novel approach can propel extended applicability for developing sustainable commercial product besides providing relief to a resource limited setting.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Humans , Nucleic Acid Amplification Techniques/economics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction/economics , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Viroporin Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL